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Summary

1. Influx of Ca2+, Mg2+ and Na+, and efflux of K+,
have central importance for the function and survival of
vascular smooth muscle cells, but progress in understanding
the influx/efflux pathways has been restricted by a lack of
identification of the genes underlying many of the non-
voltage-gated cationic channels.

2. This review highlights evidence suggesting the
genes are mammalian homologues of theTr ansient
Receptor Potential (TRP) gene of the fruit-fly, Drosophila.
The weight of evidence supports roles for TRPC1,
TRPP2/1, and TRPC6, but recent studies point also to
TRPC3, TRPC4/5, TRPV2, TRPM4, and TRPM7.

3. Activity of these TRP channels is suggested to
modulate contraction and sense changes in intracellular
Ca2+ storage, G-protein coupled receptor-activation, and
osmotic stress.Roles in relation to myogenic tone, actions
of vasoconstrictors substances, Mg2+-homeostasis, and the
vascular injury response are suggested.

4. Knowledge that TRP channels are relevant to
vascular smooth muscle cells in both their contractile and
proliferative phenotypes should pave the way for a better
understanding of vascular biology and provide the basis for
discovery of a new set of therapeutic agents targeted to
vascular disease.

Introduction

Blood vessels are essential for the development and
physiology of every organ of the body and vascular disease
is the most common cause of death or disability in the
western world1-5. Critical to all blood vessels except
capillaries is the smooth muscle cell, a cell that is mostly
restricted to its contractile phenotype in the adult but which
undergoes profound phenotypic modulation in response to
appropriate stimuli, providing a core element of vascular
injury and adaptive responses, and underlying components
of atherosclerotic plaques and neointimal hyperplasia.

Entry of the cations calcium (Ca2+), sodium (Na+)
and magnesium (Mg2+) into the vascular smooth muscle
cell is of central importance for the cell’s functional
properties and phenotype6-13. Understanding these
pathways has, however, been hampered by not knowing the

identity of genes encoding numerous non-selective cationic
channels - channels that are distinct from the voltage-gated
Ca2+ channels, P2X receptors, and If pacemaker
channels14-16. Existence of these additional cationic
channels has been gradually appreciated over the past 30
years, largely because of the resistance of some signals to
conventional Ca2+ antagonists such as verapamil, because
electrophysiological studies show the signals are not
voltage-activated, and because vasoconstrictor stimuli
ev oking the signals include not only ATP but also
endothelin, noradrenaline, vasopressin, Ca2+-store depletion
and membrane stretch15,17-19. A leap forward in
understanding these pathways is now occurring following
the discovery of TRP channels, the general properties of
which have been reviewed20-25.

The TRP field originated in studies ofDrosophila
photoreceptors where a mutation in theTRPgene resulted
in a more transient membrane potential depolarisation
(transient receptor potential, TRP) in response to constant
bright light, suggesting the mutation led to loss of function
of an ion channel that normally mediates sustained
depolarisation22. Since 1995, many mammalian
homologues of theDrosophila TRPgene were reported and
it became apparent that they, like Drosophila TRP, encode
cationic channels20-25 – i.e. channels that confer membrane
permeability to Na+ and K+, in many cases also Ca2+, and in
at least one case, Mg2+. The mammalian TRP channels
number at least 25 and are sub-classified based on amino
acid sequence identity into groups denoted by an upper-case
letter: For example, C for canonical or classical (hence
TRPC1, TRPC2 … TRPC7), indicating the highest
similarity to the archetypalDrosophila TRP; the full
subclassification has been reviewed15,23-25. Some TRP
channels are modulated by voltage, but depolarisation is not
a critical trigger for channel opening, as it is, for example,
in voltage-gated Ca2+ channels. Instead,intriguing
activation signals have emerged, including temperature
change, hydrogen peroxide, and gustatory chemicals.
Although much attention has focused on the roles of
mammalian TRP channels in sensory systems, the channels
are also prevalent elsewhere and in vascular smooth muscle
they are providing fertile ground for discovery. This review
provides a summary of progress, highlighting evidence that
at least ten types of TRP channel have functions in either
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the contractile or proliferative phenotype of the vascular
smooth muscle cell – roles that are both physiological and
potentially pivotal in vascular disease.

Functions of TRP channels in vascular smooth muscle

TRPC1 – cell contraction and proliferation

TRPC1 was the first mammalian homologue of
Drosophila TRP to be cloned20,21 and throughout the
subsequent decade TRPC1 was widely studied.
Nevertheless, TRPC1 has, in some regards, been a
frustrating subject because its heterologous over-expression
has often not produced a signal clearly distinguishable from
background signals (data have been reviewed26). Therefore,
signals reported for TRPC1 may be obfuscated by
endogenous ion transport mechanisms of the expression
system, and it remains unclear if TRPC1 can actually
function without the co-operation of other proteins,
including other TRP channels.For example, it is plausible
that TRPC1 operates only as part of a protein complex; for
example, as per KV9.3 in complexes with KV2.1/2, and
KIR6.1 in complexes with SUR227,28. Heterologous
expression studies of TRPC1 have not produced agreement
on the activation mechanism.

Much of the appreciation of TRPC1 comes from
efforts to inhibit endogenously expressed TRPC1.These
studies have been perhaps surprisingly successful, leading
to agreement on the functional role of TRPC1 at the cellular
level. Early on, mRNA encoding TRPC1 was found to be
widely expressed, including in vascular smooth muscle15,26.
Although there are fewer studies at the protein level i t
seems fair to say that TRPC1 protein is also widely
expressed. Further, using antibody targeted to an
extracellular epitope of TRPC1 we showed at least a
fraction of TRPC1 in smooth muscle is a trans-plasma
membrane protein mediating Ca2+-influx29. Tonic activity
was not evident. Instead,activity occurred once Ca2+ stores
were passively depleted using thapsigargin. Studieswith
antisense DNA and siRNA targeted to TRPC1 mRNA hav e
yielded similar results for arterial smooth muscle cells
growing in culture30,31. Therefore, three independent
laboratories, using different techniques, conclude TRPC1 is
a component of the store-operated channel (SOC) of the
arterial smooth muscle cell in either its contractile or
proliferative phenotype. Thereare no conflicting reports.

The broad structural similarity of TRPC1 to the
Shaker voltage-gated K+ channel suggests TRPC1 is
actually part of the ion permeation pathway of the SOC and
not simply an accessory regulatory protein partner. This
does not, however, exclude the involvement of other TRP
proteins in the SOC, particularly because - again by
analogy withShaker-like channels - TRPC1 is likely to be
only one component of a heterotetrameric channel complex.
Heterologous expression studies and biochemical assays
indicate TRPC1 can associate with TRPC4, TRPC5,
TRPC3 and TRPP232-36. Indeed, siRNA targeted to mRNA
encoding TRPC4 suppresses the SOC signal in pulmonary
artery myocytes in culture, without effect on background
Ca2+

i or Ca2+-release signals37. An antisense DNA study on

mesangial cells – cells with some relation to vascular
smooth muscle – also supports a role for TRPC4 in SOCs38.
TRPC5 may act similarly39 and has the capacity to respond
to store-depletion when over-expressed in HEK-293 cells40.

It is often envisaged that the functional role of
TRPC1 is as part of a mechanism to refill Ca2+-stores, and
this might well be one of its roles.However, TRP channels
have multiplicity of gating - also called versatility of
gating40-42; that is, they can be activated by more than one
stimulus, perhaps making them integrators or coincidence
detectors (see below). Therefore,in line with the complex
and often controversial data from heterologous expression
studies, TRPC1 may have other activation mechanisms that
do not require store-depletion.Indeed, endogenous SOCs
in vascular smooth muscle are activated by noradrenaline
independently of store-depletion43. The scope of TRPC1
activation mechanisms has probably yet to be discovered.

The overall importance of TRPC1 to vascular smooth
muscle seems considerable – relating both to the muscle’s
contractile and proliferative functions. Blockof TRPC1
inhibits endothelin-evoked contraction in rat caudal
artery44. Intriguingly, there is, in contrast, no role for
TRPC1 in endothelin-evoked contraction of the basilar
artery, unless it is subjected to organ culture, when store-
operated Ca2+ entry in the smooth muscle cells is up-
regulated45. In support of a role of TRPC1 in evoking
contraction, over-expression of TRPC1 enhances
pulmonary artery contraction evoked by cyclopiazonic acid
(an agent that depletes Ca2+ stores) but not potassium-
induced depolarisation46.

It is emerging that TRPC1 is not only relevant to Ca2+

entry that impacts on the contractile proteins.In part this
suggestion has come from work on SOC in cerebral
arterioles: TRPC1 is involved in this SOC29 but the SOC-
mediated Ca2+-entry fails to evoke contraction, even though
the Ca2+ elevation is equivalent to that evoked by 33 mM
K+, which does cause contraction47. Although this
Ca2+-entry might be tightly coupled to refilling of Ca2+

stores, as suggested by Casteels & Droogmans48, it may
have other functions that are not directly related to
generating contraction.Another function may be regulation
of cell proliferation because antisense DNA targeted to
TRPC1 mRNA inhibits proliferation of pulmonary artery
smooth muscle cells in culture30. Furthermore, TRPC1
expression is up-regulated under conditions that evoke
smooth muscle adaptation and proliferation30,31,45.

TRPP1/2 – polycystins and aneurysmal disease

Polycystic kidney disease results from mutations in
TRPPgenes49. Intriguingly, these patients suffer not only
from cysts on the kidney, but also from aneurysmal disease
– thinning of the arterial wall that leads to rupture and
internal bleeding. Similarly, mice with disruptedTRPP
genes suffer from haemorrhage as well as cysts on the
kidneys. Thevascular effects relate in part to abnormality
in vascular smooth muscle cells becauseTRPP1andTRPP2
are expressed in these cells and SOC Ca2+ entry is
suppressed inTRPP2+/- mice50-51. The link between this
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abnormality in Ca2+ handling and aneurysmal disease is
unknown, but the suggestion is that TRPP proteins are
involved in controlling the myo-elastic structural integrity
of blood vessels52. Knowledge that TRPP2 binds to the C-
terminus of TRPC132 indicates these proteins may have a
co-operative relationship, but experimental data to test this
idea are lacking.

TRPC6 – multifunctional channel

It is widely agreed that TRPC6 is expressed in
vascular smooth muscle15 and several studies have provided
evidence of its functional importance.Strikingly, the
functions proposed are diverse: Antisense DNA targeted to
TRPC6 mRNA inhibits proliferation as well as remodelling
of pulmonary artery smooth muscle cells53. It also inhibits
store-operated Ca2+ entry in pulmonary myocytes53,
cerebral artery myogenic tone54, and phenylephrine-evoked
cationic current and Ca2+-entry in portal vein smooth
muscle cells55. Welsh et al.54 also found cationic channel
activation by hypo-osmotic stress was suppressed by
antisense DNA to TRPC6. siRNA targeted to mRNA
encoding TRPC6 also suppressed cation entry evoked by
the diacylglycerol OAG31. Although not shown directly,
vasopressin-evoked activation of cationic channels in A7r5
cells may also be mediated by TRPC656.

There is, therefore, the suggestion that endogenous
TRPC6 is a store-operated, receptor-operated, stretch-
activated and osmotically-activated cationic channel in
vascular smooth muscle cells.Although multiplicity of
activation is an emerging concept for TRP channels40,42

extensive studies of heterologously over-expressed TRPC6
show it to be primarily linked to receptor activation, but not
store-depletion, membrane stretch, or osmotic stress.
TRPC6 can, however, be activated by diacylglycerols
(albeit at high concentration), the arachidonic acid
metabolite 20-HETE, or phosphatidylinositol
3,4,5-trisphosphate15,57, any of which could be a common
factor in endogenous activation by more general stimuli.In
this context, the effect of 20-HETE is intriguing because it
is a potent vasoconstrictor, acting in part by inhibiting the
BKCa potassium channel in vascular smooth muscle cells58.
Whether 20-HETE activates cationic channels in vascular
smooth muscle cells, as it does in cultured tracheal
myocytes59, is not reported.20-HETE is produced during
the development of myogenic tone, although Scotlandet
al.60 recently suggested its effect is mediated via TRPV1 in
perivascular sensory neurones.

If there turns out to be no common activation signal
mediating the functional modalities of endogenous TRPC6
or it truly lacks multiplicity of gating, how should we
explain the published data?We perhaps should not exclude
that the antisense DNA probes to TRPC6 mRNA could lack
specificity, or the expression ofTRPC6 gene may be
directly linked to other genes, leading to knock-on effects
on other pathways – note for example a report on siRNA
knock-down of TRPM761. Recently, Lin et al.31 found no
effect of siRNA targeted to TRPC6 on SOC in pulmonary
artery smooth muscle cells grown in culture, contrasting

with data produced with antisense DNA to TRPC6 in
essentially the same cell type53. We should also consider
that heterologous over-expression in HEK 293 cells may
fail to reproduce the contextual environment of the smooth
muscle cell – obviously HEK 293 cells do fail at this, but
how important is this failure? It is clear that TRPC6 is
highly relevant to smooth muscle function but we have
much to understand about its regulation and roles.

TRPC6/3 – factors in pulmonary arterial remodelling

Idiopathic pulmonary arterial hypertension (IPAH) is
caused by excessive smooth muscle proliferation and results
in right heart failure. Kunichika et al.62 and Yu et al.63

found IPAH to be associated with up-regulated expression
of TRPC6andTRPC3(but notTRPC1) genes at the levels
of mRNA and protein. These effects occur in the smooth
muscle cells and siRNA targeted to mRNA encoding
TRPC6 is an inhibitor of proliferation in smooth muscle
cells cultured from patients with IPAH. Furthermore,
chronic hypoxia enhances TRPC6 expression31 and the
endothelin receptor antagonist bosentan, which is used in
the treatment of IPAH, has a marked suppressive effect on
TRPC6 expression62. Therefore, whatever the endogenous
activation mechanism of TRPC6, there are indications of
the channel’s importance in pulmonary vascular disease.A
functional role of TRPC3 in these events has not been
demonstrated, but it can form heteromultimers with
TRPC636 and may have particular relevance because of its
capacity to enable tonic entry of cations64.

TRPC3 – mediator of UTP-evoked constriction

TRPC3 has been commonly detected in smooth
muscle15 but no functional roles had been assigned until
recently. It is now apparent that antisense DNA targeted to
mRNA encoding TRPC3 inhibits depolarisation and
vasoconstriction evoked by uridine triphosphate (UTP), but
not luminal pressure, in rat cerebral artery65. The antisense
DNA also inhibited UTP-evoked whole cell current in
isolated smooth muscle cells. Therefore, a role for TRPC3
in agonist evoked cationic current and contraction is
suggested. AlthoughTRPC3 can associate with TRPC6
and confer tonic cationic channel activity64, no role for
TRPC3 in determination of the resting membrane potential
or myogenic tone was evident in the studies of Readinget
al.65. Further, although TRPC6 is receptor-operated (see
above), and expressed in cerebral arteries, the UTP-evoked
cationic current is abolished by antisense DNA targeted to
TRPC3.

TRPV2 – hypo-osmotic sensation

TRPV2 was first associated with sensory systems but
its mRNA is detected in a wide range of other cell types66,
including blood vessels67. In murine aortic myocytes, cell-
swelling caused by hypotonic solution activates non-
selective cationic channels and evokes Ca2+ entry67. These
responses are inhibited by ruthenium red, a blocker of
TRPV channels.Treatment of mouse aorta with antisense
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DNA targeted to TRPV2 mRNA reduced the amount of
TRPV2 protein and suppressed activation of cationic
channels by hypo-osmotic stimulation.Muraki et al.67

showed TRPV2 over-expressed in Chinese hamster ovary
(CHO) cells is activated not only by hypo-osmotic
stimulation but also by mechanical deformation of the
platform on which the cells were grown. Theimplication
of these findings for the general function of blood vessels
remains to be elucidated.For example, is TRPV2 involved
in generation of myogenic tone?Muraki et al.67 also
detected mRNA encoding TRPV4 in aorta, although at
lower levels than for TRPV2.The functional significance
of this finding was not described, but it may be relevant that
a TRPV4-like signal is detected in airways smooth muscle
cells grown in culture68.

TRPM4 – activation by intracellular Ca2+

There have been reports of endogenous
Ca2+-activated cationic channels in vascular smooth
muscle69-71. The presence of such channels might serve to
amplify vasoconstrictor signals and so the expression of
TRP channels that are Ca2+-activated is of potential interest.
Although TRPC5 is stimulated by intracellular calcium34,40,
the most striking Ca2+-activated TRP channels would seem
to be those in the TRPM subfamily. The first found to be
strongly activated by intracellular Ca2+ was TRPM272,73 -
expression of which occurs, at least at mRNA lev el, in
arterial smooth muscle74. For TRPM2, the cofactor ADP-
ribose is thought to be necessary for Ca2+-activation to
manifest itself. TRPM4 can be activated by intracellular
Ca2+ in the absence of a co-factor, although there is a rapid
decline in Ca2+-sensitivity when membrane-patches are
excised from cells, as if a co-factor is normally involved75.
It has been proposed that TRPM8 is a ‘coincidence’
detector – i.e.that it senses intracellular Ca2+ if a co-factor
(an icilin-like agent in the case of TRPM8) is present76.
This might be a common theme for TRPM channels.

Messenger RNA encoding TRPM4 has been detected
along with a Ca2+-activated cationic channel in smooth
muscle cells of cerebral arteries71. High micromolar
concentrations of intracellular Ca2+ are required to activate
this channel, which may raise questions about the
physiological relevance of the effect, or over whether Ca2+

is the normal activation signal, or whether a co-factor is
required. Thelatter is indicated because it was observed
that detection of the endogenous TRPM4-like channels was
more reliable after prior treatment of cells with a phorbol
ester.

Antisense DNA targeted to TRPM4 mRNA has been
introduced into organ cultured arteries and caused near-
abolition of myogenic tone, rather as antisense DNA to
TRPC6 does in the same arteries54. Therefore although
TRPM4 is not known to be stretch activated, it some how
contributes critically to the myogenic response, perhaps
working co-operatively with TRPC6 or in series with it.
One hypothesis is that Ca2+ entering through TRPC6
channels stimulates TRPM4 channels such that TRPM4 is
an amplification mechanism for TRPC6. TRPM4 is

permeable to Na+ but not calcium77.

TRPM7 – Mg2+ homeostasis

TRPM7 was originally noted for its importance in
cell survival and its ubiquitous distribution78. Subsequently
it was shown to confer membrane permeability to a wide
range of cations and suggested to be an endogenous Mg2+

channel, regulating the intracellular Mg2+ concentration and
consequently cell survival79,80. There is now evidence these
concepts are directly applicable to vascular smooth muscle
cells growing in culture, whereTRPM7gene is expressed as
mRNA and protein81. siRNA targeted to mRNA encoding
TRPM7 nearly abolished the acute elevation in the
intracellular Mg2+ concentration when extracellular Mg2+

was elevated from 0 to 2 mM. Furthermore, angiotensin II
and aldosterone enhancedTRPM7gene expression, and the
chronic positive effect of angiotensin II on intracellular
Mg2+ levels was inhibited by the siRNA targeted to
TRPM7. ThesiRNA also suppressed angiotensin II-evoked
cell proliferation. TRPM7 would therefore seem to be a
prime regulator of Mg2+ homeostasis in vascular smooth
muscle, which is likely to have considerable importance
given the wide-ranging vascular effects of
magnesium12,82,83.

Conclusions

Figure 1 provides a summary of the emerging
evidence suggesting that at least 10 of the 25, or so, TRP
channels have functional roles in vascular smooth muscle.
Such an extensive display of TRP function is impressive
and challenges progress on any other cell type of the body.
More research will of course be needed to confirm and
further explore the roles of these, and other, TRP channels.
In order to achieve this, development of more and better
tools to explore the channels will be an on-going
requirement – including the development of selective
pharmacological agents. We also need a better
understanding of the activation mechanisms of the
channels, identification of endogenous regulatory ligands,
and more efforts to appreciate the heteromultimerisation of
endogenous TRP channels and their association with
protein complexes. We are also challenged with
understanding the overlapping functions and
multifunctional nature of the TRP channels.Nevertheless,
these are exciting and progressive times in this field. The
knowledge that TRP channels are relevant to vascular
smooth muscle function in both its contractile and
proliferative phenotypes should pave the way for a better
understanding of vascular biology and provide new targets
for agents that might reduce the death and disability rates
resulting from vascular disease.
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Figure 1. Emerging functions of 10 types of TRP cationic channel in vascular smooth muscle. The TRP channels are
shown pictorially arranged in a circle in recognition of their membership of one protein family. The circle does not neces-
sarily indicate a physical association with an adjacent TRP. Nevertheless, there is experimental evidence for physical asso-
ciations between TRPC1 and TRPP2, TRPC1, TRPC3, TRPC4 and TRPC5, and TRPC3 and TRPC6 (see text for refer-
ences).
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